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We investigate the searchability of complex systems in terms of their interconnectedness. Associating
searchability with the number and size of branch points along the paths between the nodes, we find that
scale-free networks are relatively difficult to search, and thus that the abundance of scale-free networks in
nature and society may reflect an attempt to protect local areas in a highly interconnected network from
nonrelated communication. In fact, starting from a random node, real-world networks with higher order orga-
nization like modular or hierarchical structure are even more difficult to navigate than random scale-free
networks. The searchability at the node level opens the possibility for a generalized hierarchy measure that
captures both the hierarchy in the usual terms of trees as in military structures, and the intrinsic hierarchical
nature of topological hierarchies for scale-free networks as in the Internet.
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I. INTRODUCTION

Each element interacts directly only with a few particular
elements in most complex systems. Distant parts of the net-
work thereby formed can consequently communicate
through sequences of local interactions. In this way all parts
of the network can be reached from other parts, but not all
such communications are equally easy or accurate �1–4�. The
purpose of this paper is to investigate the interplay between
searchability of a network and the network structure. By
searchability or navigability we mean the difficulty of send-
ing a signal between two nodes in a network without disturb-
ing the remaining network. We use a city-street network to
illustrate the concept of navigability in networks �5�. As in
Fig. 1�c� the streets are identified as nodes and intersections
between the streets as links between the nodes. From this
point of view, the above statement reads: A pedestrian or
driver on a street in a city, can by multiple choices reach any
other street in the city via the intersections. However, not all
streets are as easy to find, and the difficulty of finding a street
may vary from city to city.

In the current paper we investigate how different network
topologies influence the average amount of information that
is needed to send a signal from one node to another node in
the network. We consistently concentrate on specific signal-
ing, and focus only on locating one specific node without
disturbing the remaining network. This is different from the
nonspecific broadcasting where any input is amplified by all
exit links of every node along all paths, as in spreading of
spam or propagation of diseases and computer viruses �6,7�.
We present a quantification of the specific signaling and jus-
tify our choice of measure by its minimum information prop-
erty.

II. SEARCH INFORMATION

We consider a specific signal, or a walker, on a network
and assume that the specific signal from a source s to a target
t is a signal that travels along the shortest path, and thereby
minimizes the disturbance on other nodes. This assumption
is made on the basis that the shortest path is a good estimate
for typical traffic in a network �8�. We will later discuss the
alternative model, to follow the minimal information path,
not necessarily coinciding with the shortest path. The mini-
mal amount of information needed to follow a specific short-
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FIG. 1. �Color online� An example where the search information
is an important concept. �a� illustrates a visitor’s perspective of an
unknown city. The visitor therefore asks a citizen with the perspec-
tive �b� of the city, or rather the higher abstraction level �c�. This
level is the dual map of the city, a network where streets are iden-
tified as nodes and intersections between streets as links between
the nodes. We use this level to quantify the search information in
�d�; the average number of yes-no questions the visitor must ask the
citizen to find a specific street. The necessary information to walk
the shortest path from s in the lower right corner to t in the upper
right corner is log2 36 bits or roughly 6 yes/no-questions.
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est path is determined by the degrees of the nodes along the
path, i.e., the number and size of the branch points between
the nodes. That is, a walker on the network first has to
choose the right exit link �we call it the path link� among the
ks possible links from s. The cost depends on the available
global information on the node and the way the information
is organized at the node �9,10�. If no information is available,
the choice must be random, and the walker will perform a
random walk. We here consider scenarios where the network
represents the communication backbone of a system with
available information on the node level, e.g., social networks
�3,4�, computer networks �10�, city networks �5,11�, etc. In
principle, if the exit links are unordered, one yes-no question
must be asked for every exit link to find the path link. On
average this would give rise to an average cost of k /2 yes-no
questions or �k−1� /2 if the arrival link at the node is known
and one link immediately can be excluded. This is illustrated
in Fig. 2�c�.

The other extreme situation is when the exit path some-
how is given by default or the information cost can be ne-
glected in comparison to the walk on the shortest path itself
�Fig. 2�a��. We here focus on the case where the links are

ordered, like intersections along a road. In this case a ques-
tion can be used to reduce the possible outcomes by a factor
2. A city example: The yes-no answer to “Does any one of
the eight closest roads lead toward the station?” reduces the
outcome to eight roads if it there were 16 possible intersect-
ing roads to choose from. The total number of bits, or
roughly the number of yes-no questions, necessary to find
the path link is log2�k� or log2�k−1� if the arrival node is
known to not lead to the target as in Fig. 2�b�.

That is, log2�ks� bits of information are necessary at the
start node s, where ks is the degree of s. Subsequently the
walker at each node j� p�s , t� along the path p�s , t� has to
choose the particular exit link along the path. Given the
knowledge to follow the path to j, there are kj −1 unknown
exit links from j, and the information needed to make the
next step is log2�kj −1�. As a result the total information
needed to follow the path is

Su„p�s,t�… = log2�ks� + �
j�p�s,t�

log2�kj − 1� , �1�

where p�s , t� includes nodes on the path between s and t, but
not the start and end nodes s and t �see Fig. 3�a��. We use the
notation Su to emphasize that the walk is a result of decisions
for a specific and unique path and repeat that we use
log2�kj −1� at every step but the first since the link of arrival
is known �Fig. 2�.

If there is more than one shortest path between s and t the
information needed to travel along one of the shortest paths
has to include the thereby added degenerate possibilities �1�.
Degenerate paths imply that more than one exit link can lead
the walker closer to the target from each node, and should be
reflected in a decreased path information Sd(�p�s , t��); the
subscript d is for degenerate paths and �p�s , t�� is for the set
of paths between s and t. If a node j has kj links, of which � j
links point toward the target node t, then the number of bits
to locate one of the correct exits is reduced to log2��kj

−1� /� j� �and to log2�ks /�s� for the first step at the source
node s�. In this definition we make the assumption that the
probability of choosing any exit link on a shortest path from
the current node is equal. Therefore each of the degenerate

FIG. 2. �Color online� The information cost at each node depend
on the ordering of the link. �a� The information cost does not de-
pend on the degree if there is only one possible link. �b� It is
possible to ask yes-no questions and successively eliminate groups
of wrong exits if the links are ordered. Every yes-no question opti-
mally reduces the number of possible links with 1/2 and the cost is
log2�k−1� to find the correct exit link. �c� If the links are unordered
such groupings are impossible and every exit link must be consid-
ered. In such a scenario the average number of necessary yes-no
questions is �k−1� /2.

FIG. 3. �Color online� Search information with degenerate paths between the source s and target t. The numbers around the nodes
indicate with what probability the link is chosen on the walk to t. The boldfaced number is the information cost in bits at the given node. The
total information cost S�s→ t� above every network is given by the average cost over all paths marked with black lines �the sum of the costs
at the nodes along the paths� weighted with the probability to walk the path �width of black lines�. We present three scenarios. �a� The walker
aims to take a specific shortest path in, the cheapest informationwise. �b� The walker chooses between two exits, both on the shortest path,
randomly. This results in a lower total information cost since a random choice does not cost any information, even though some walks will
go through the expensive hub to the right �2.3 bits�. �c� The walker chooses to minimize the average information cost between s and t. The
difference between �b� and �c� is clear from the choice at node j. In �c� more information is used at this node to avoid the higher cost of going
to the hub to the right. This is completely avoided in �a� by going to the left at s, but at a higher information cost.
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paths will be selected with a different probability, as indi-
cated in the example of Fig. 3�b�. That is, each path in the set
of degenerate paths �p�s , t�� is selected with probability

P„p�s,t�… =
1

�s
�

j�p�s,t�

1

� j
. �2�

The average number of bits needed to follow a random short-
est path is accordingly

Sd�s → t� = �
�p�s,t��

P„p�s,t�…log2	 ks

�s
�

j

kj − 1

� j

 . �3�

This simplifies to Eq. �1� in the case where there is only one
degenerate path. When there are degenerate paths between s
and t, Sd�s→ t� does not distinguish paths that are difficult to
follow from the easier ones, but just averages.

The average path information Sd�s→ t� is closely related
to the earlier introduced search information �5,12–14�:

S�s → t� = − log2	 �
�p�s,t��

1

ks
�

j

1

kj − 1
 , �4�

where the sum runs over the set �p�s , t�� of degenerate short-
est paths between s and t. Thus, again, if there are no degen-
erate shortest paths, S�s→ t�=Su�s→ t�. If there are degener-
ate paths, the relative weighting of these paths differs. In the
Sd measure each path is weighted according to the branching
of shortest path shown in Fig. 3�b�, and is thus the typical
information needed to follow a random branch of one of the
shortest paths through the network. In contrast S measures
the minimal information value of knowing the full path and
the subscript m for minimal is omitted. S is defined as −log2
of the probability that a nonguided signal emitted from s
arrives at t with minimal number of steps. For all networks
we have tested Sd is maximally a few percent larger than S,
reflecting that situations where one of the branches is sub-
stantially more difficult to travel only gives a small addi-
tional correction to Sd �see Fig. 4�. Also, we always found
indistinguishable results when we analyzed the networks in
terms of the conditional uniform test S−S �random� or in
terms of Sd−Sd �random� �15,16�.

To get the corresponding probabilities to follow a given
path as in Eq. �2� we present a simple example of the mini-
mum information property of S, and choose the path from j
to t in Fig. 3�c� as an example path. Let the probability to
take the left path be q1 and the right path via the hub be q2
=1−q1 and further the probability to reach the target be p1
after the left choice is taken and p2 if the right choice is
taken. The probability to choose the link down to the left is
0, since it is not on a shortest path to t. Then the total infor-
mation cost from j to t is

S�j → t� = �log2 3 + q1 log2 q1 + q2 log2 q2� − �q1 log2 p1

+ q2 log2 p2� , �5�

where the first term in parentheses on the right-hand side is
the information cost to pay at node j. The full expression of
this term reads

�
i=1

3

−
1

3
log2	1

3

 − �

i=1

3

− qi log2�qi� , �6�

and is the difference between the information entropy of a
random choice and the information entropy of the actual
choice—the meaningful information of the choice. The infor-
mation cost payed at node j ensures that the walker takes the
path to the left with probability q1 and to the right with
probability q2. This is equivalent to the meaningful informa-
tion content of a policeman in the crossing who points to-
ward the left with probability q1, to the right with probability
q2, and never down to the left �since it is not on a shortest
path to t�. The remaining two terms in Eq. �5� represents the
cost from the next step to the target as two contributions
according to Eq. �4�, weighted with the probabilities q1 and
q2 of choosing the paths.

We set dS /dq1=0 to find the minimum. With q2=1−q1
we get

0 = log2 q1 − log2�1 − q1� − log2 p1 + log2 p2, �7�

or q1 /q2= p1 / p2, satisfied by

q1 = p1/�p1 + p2�, q2 = p2/�p1 + p2� . �8�

Inserting this back in Eq. �5� gives

S�j → t� = − log2	1

3
p1 +

1

3
p2
 , �9�

which is identical to Eq. �4�. Effectively q1 and q2 weight the
probability of choosing an exit from j with the difficulty of
following it. For example, paths that contain large hubs will

FIG. 4. �Color online� Search information of random Erdős-
Rényi �ER� networks as a function of average degree �k�. The num-
ber of nodes is N=103 and we keep the networks connected. The
shaded area is the contribution from degenerate paths with the up-
per edge corresponding to the definition of Su in Fig. 3�a�. The
definition in Fig. 3�b� is inseparable in this plot from the search
information according to Fig. 3�c�. The degenerate paths make the
highly connected networks more searchable, mainly due to degen-
erate paths of length 2 between each pair of nodes. Thus the result-
ing S is lower than that obtained when considering information
associated to locating just one of the shortest paths �upper border of
shaded area�. For very low degrees, �k�2, the organization of the
networks opens for a broad range of different topologies with very
different searchability; the average shortest path increases and fi-
nally no degenerate paths exist.
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be suppressed because the probability of following such
paths randomly is lower.

To be able to characterize the complete network in terms
of searchability we define S as the average of pairwise search
information between nodes over all pairs of nodes

S =
1

N�N − 1��s�t

S�s → t� . �10�

Thus, although S is defined in terms of global random walk-
ers it should be interpreted as subsequent and local minimi-
zation of information costs to navigate to a target node. Thus,
it is different from the random walker approach that has been
used to characterize topological features of networks �17,18�,
including first passage times �19�, large scale modular fea-
tures �20�, and search utilizing topological features �9�. Nei-
ther should the search information with its logarithm of base
2 be mixed up with entropy measures associated with the
degree distribution �21�, measures related to the dominating
eigenvector of the adjacency matrix �22�, or different flows
on networks like betweenness centrality and closeness
centrality�23–25�. Instead S measures the amount of infor-
mation that turns a random walker to a directed walker that
follows a shortest path �or any other chosen path� between
the source s and target t.

Some insight into the search information S, which also
makes the difference from a pure entropy measure clear, is
obtained if we consider the simple average along one of the
shortest paths, and ignore information associated with having
arrived from a link that cannot be leading closer to t:

S�s,t� = �
p�s,t�

P„p�s,t�…log2	ks�
j

kj
 �11�

with a total average path information

S =
1

N�N − 1��j=1

N

b�j�log2�kj� , �12�

which differs from a pure entropy measure of the form
�p log p since b�j� is proportional to kj only when the walk
is random. Here b�j� is the traffic betweenness of the node j,
defined as the number of shortest paths between pairs of
nodes in the network that pass through node j, including
paths that start at j or paths that end at j. This traffic be-
tweenness differs from the usual betweenness �23,24� by the
different treatment of degenerate paths, in the sense that a
given degenerate path contributes to betweenness with a
weight given by the difficulty of walking the path according
to Eq. �4�. In practice, in all the real networks that we have
investigated, we found that the difference is negligible. We
thus expect relatively large S values for networks �1� where
there are many nodes on the shortest path between other
nodes �most b�i� large�, and �2� where most traffic goes
through highly connected nodes. Point 1 predicts large S for
modular networks, whereas point 2 suggests relatively large
S for networks with broad degree distributions. The path
length is indirectly coupled to points 1 and 2; stringy net-
works as well as regular networks with long average path
lengths have high S and starlike networks have small S de-

spite point 2, because of the very short paths. In the remain-
ing part of this paper we will examine the interplay between
S and global topology in detail.

III. SEARCH INFORMATION IN MODEL NETWORKS

The search information is topology dependent, and in this
section we present how S captures the average degree, the
degree distribution, and higher order topological organiza-
tion of the networks.

Figure 4 shows how the S depends on average degree �k�
in a random network. The lower curve is the total S and the
shaded area represents the contribution from degenerate
paths. The upper border of the shaded area is consequently
Su, the search information without degenerate paths. Sd �Su

�Sd�S�, that weights paths according to branch points
along the paths, is within the shaded area �although it is
indistinguishable from the lower curve in the present case�.
Notice that the figure mostly examines very high �k� values
where most pairs of nodes are connected by multiple degen-
erate paths of length 2. This explains the reduction in search
information due to degenerate paths, which becomes small
for the real-world networks when �k� is 1–10. For these small
�k�, S depends crucially on the global topological organiza-
tion: it is log2 2=1 for a one-dimensional string, log2 N for a
star, but of order N /4 for a stringy structure with many sepa-
rated branches �see Fig. 4�. The increase of the average
shortest path length �l�, plotted as a dashed line, indicates
that the stringy structure dominates in the ensemble of ran-
dom networks with low �k�.

In Fig. 5 we demonstrate that s=S / log2�N� is nearly a
size-independent way to compare networks of different size
with each other �5�. Thus this quantity is an invariant for any
given type of network topology, whether it is dominated by a
single hub �star�, whether it is scale-free �SF�, or whether it
is of Erdős-Rényi �ER� type. In all cases we compare net-
works with the same average degree and find that s nicely
differentiates between different types of networks with a
given amount of links between the nodes. The asymptotic

FIG. 5. �Color online� S as function of system size N for fully
connected random network topologies with fixed average degree
�k�=5. ER refers to Erdős-Rényi random networks and SF to ran-
dom scale-free networks with degree distribution �1/ �k0+k�2.4 with
k0 adjusted for every network size so that �k� is kept fixed. A star
network with one node connected to the remaining nodes in the
network and the remaining links randomly distributed scales as-
ymptotically as S=log2 N+1 as in principle every shortest path goes
through the hub with the cost log2�N−1�.
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logarithmic scaling can be understood by the logarithmic in-
crease in average shortest path length for Erdős-Rényi net-
works, �lsp�� log N �26�, and constant cost at every node
�log2�k��. For scale-free networks it is a little deeper, but
simple for the extreme cases. For �=2 the average shortest
path length is constant and the size of the largest hub in the
network scales linearly with the system size �26�. As almost
all shortest paths will go through this “superhub” as in a star
network, the search information is proportional to log2 N.
For ��3 the average shortest path length scales as log N and
the largest hub is finite, similar to Erdős-Rényi networks
�27�.

From Fig. 5 we also notice that scale-free networks have
the largest S, at least as long as we consider a random orga-
nization of the topology. This is because nodes with large
values of ki also have large bi, and therefore contributes rela-
tively more to the overall confusion according to Eq. �12�.
This fact is explored more in Fig. 6 where we show the
variation of S / log2�N� as function of degree distribution
quantified by �. At low �2, where effectively a scale-free
network behaves very similar to a star network, the largest
hubs tend to be connected to a major fraction of the system.

A typical path therefore passes through a major hub of de-
gree k�N and maybe one more node as indicated by the
average shortest path length. For larger � the high cost of
passing nodes with k�N disappears, but the total average
cost nevertheless increases since the path length increases
rapidly. In Fig. 6�b� the average degree is kept constant by
adjusting k0 in the degree distribution P�k�� �k0+k�−�. This
weakens the increase in average path length as � increases
and S instead slowly decreases because the probability for
having very large hubs decreases.

We now turn to networks with narrow degree distribu-
tions, but nonrandom topologies and start with an illustrative
calculation of S for a tree hierarchy. We obtain S=2 log�N�
−5 numerically for trees of different branching ratios d �Fig.
7�, which was corroborated analytically for a binary tree.
However, S depends on addition of links to the tree, and in
particular S is larger for the club tree, as numerically dem-
onstrated in Fig. 7. In any case S for trees is much larger than
for random networks. The reason why trees are perceived as
efficient is �1� that they are efficient seen from the top �e.g.,
data structures�, and �2� trees are mostly associated not to
specific signaling, but rather to broadcasting of information,
where everyone in a certain section is given the same infor-
mation �e.g., military organization�. Even higher information
cost has a regular network �every node connected to twice
the dimension d of the lattice� as the shortest path length
scales as N1/d. If the links of the regular network instead
represents street segments between intersections in a square
city like Manhattan �streets and avenues mapped to nodes
and intersections to links between the streets and avenues in
a fully connected bipartite network �5��, the result is com-
pletely different. Let N streets be divided into N /2 north-
south �NS� streets, and N /2 east-west �EW� streets. Going
from any NS street to a particular EW street demands infor-
mation about which of the N /2 exits is correct. This infor-
mation cost is S�NS→EW�=log2�N /2�. To go from one NS
street to another NS street means that any of the N /2 EW
streets can be chosen. Each path is thus assigned a probabil-

FIG. 6. �Color online� S as a function of the exponent � for
random scale-free networks with degree distribution P�k��1/k� in
�a�. Varying � implies varying average degree �k� according to the
second x-label row. An increased � also implies a decreased fre-
quency of large hubs and a lengthened average shortest path be-
tween nodes. To separate the effects we in �b� study the distribution
P�k��1/ �k0+k�� with k0 set to keep the �k� fixed, as in the insert.
Here we see that even though the average shortest path increases, S
decreases slightly due to a decreased frequency of hubs. However,
compared to �a� the average shortest path increases substantially
less with increasing �, due to the constant �k�. The increasing av-
erage shortest path accordingly dominates over the decreasing fre-
quency of hubs for ��2.2 in �a�. The size of the networks is N
=104 in both �a� and �b�.

FIG. 7. �Color online� S versus N for tree, club-tree and modular
networks. Both trees have a branching ratio d of 4, as seen in the
illustration above. The modular network consists of communities of
ten nodes, each of them connected to five other nodes. Each com-
munity is in turn connected with three other communities.
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ity �2/N��1/ �N /2−1��. But there are in fact N /2 degenerate
paths, and the total information cost for locating parallel
roads in this square city reduces to

S�NS → NS� = − log2	N

2

1

N/2

1

N/2 − 1

 = log2�N/2 − 1� ,

�13�

reflecting the fact that it does not matter which of the EW
roads one uses to reach the target road. This places the fully
connected bipartite network in the same class as the star
network.

As an example of typical organization in social systems
we also show the N dependence of modular networks in Fig.
7 �28�. Again, S is larger than in any random network irre-
spective of the degree distribution. We can therefore extend
the previous statement that the value of s=S / log2�N� is re-
lated to the global organization principle to include both the
degree distribution, Fig. 5, and the way the nodes are posi-
tioned relatively to each other, Fig. 7.

Again, all results are robust to the details in the formula-
tion of S and very similar results would have been obtained if
we instead had considered Su and excluded degeneracy or Sd
with a different weight of the degenerate paths. To extend
this we show in Fig. 8�b� the deviations between the search
information S and a minimum search information Smin, where
we take the minimum information concept to the extreme
and look for the path regardless of length that has the small-
est information cost. This would typically be a path that
avoids hubs. In Fig. 8 it is obvious that the right choice is
cheaper informationwise even though the path is longer. In-
tuitively the number of shortest information paths that also
are shortest paths will decay as the paths get longer and
longer. This is confirmed in Fig. 8�b� for a scale-free network
of size N=104 with �=2.4. Nevertheless, the difference from
the shortest information path is small. This observation is
valid in case of logarithmic information cost at every node,
as in the present case. If the cost instead was linear as in Fig.
2�c�, the difference would be substantial as hubs would repel
the minimum information paths much more.

IV. NODE ORGANIZATION

We have until now presented a tool to characterize net-
works on the global level and quantified networks as being
easy or difficult to navigate or search on average. We now
turn to the effect the organization of networks has on the
individual nodes. The specific communication approach
opens up a natural way to characterize the different networks
in terms of their ability to distribute communication options
among their nodes. We therefore define the hide

Ht = �
s

S�s → t�/N �14�

as the average number of bits a walker needs to walk directly
from a random node in the network to the target node t �12�.
The different values of hide reflect to what degree the nodes
are visible. Low hide H, or low average information cost to
find the node, represents high visibility. This is illustrated in
Fig. 9, where in agreement with intuition we find that Erdős-
Rényi networks are by far the most democratic, whereas
scale-free and especially tree hierarchies are hugely elitist. In
particular the tree hierarchy has localized all communication
�low H means high visibility and thus ability to receive in-
formation� to the top nodes. In Fig. 9 we plot the democratic
spread as the difference between the most and the least vis-
ible node in the network as an illustrative estimate of the
distribution of communication in the network.

The different degrees of hide information of the various
nodes effectively rank the nodes, and thereby suggest a self-
consistent measure of a hierarchy based on visibility. At the
same time the hide H captures both the hierarchy in the
usual terms of trees, as in military structures, and the intrin-
sic hierarchical nature of topological hierarchies for scale-
free networks �29� as in the Internet �16�. A highly ranked
node is close to the top in a tree. The corresponding node in
a topological hierarchy is a highly connected node. In the

FIG. 8. �Color online� The minimum information path of length
lSmin

is the path between two nodes that regardless of distance has
the smallest cost. In �a� it is clear that the right path is cheaper
informationwise but longer in number of steps. �b� shows the frac-
tion of minimum information paths that are also shortest paths in a
scale-free network with N=104 nodes and �=2.4. Although the
overall fraction is as low as 0.62, Smin is only 5% smaller than S. As
degeneracy is not considered in Smin we compare with S without
degeneracy, Su as in Fig. 3�a�.

FIG. 9. �Color online� Distribution of hide H for nodes on vari-
ous types of networks �low H means high visibility�. We see that
the Erdős-Rényi �ER� network is quite homogeneous, the scale-free
�SF� network has a wider distribution, whereas the tree hierarchy is
by far the least democratic in distributing the ability of different
nodes to communicate. The democratic spread plotted below the
box roughly estimates the division of communication in the net-
work. The number of nodes is N=104 for all networks.

ROSVALL et al. PHYSICAL REVIEW E 72, 046117 �2005�

046117-6



Internet, for example, the highly connected nodes play the
roles of intermediate nodes on typical paths between nodes
further down in the hierarchy, just like top nodes in a tree. In
analogy with �29,30� we define a path from s to t to be
hierarchical if it defines a common boss for s and t. That is,
the path has first to decrease monotonically in H j to more
and more visible nodes, until a minimum, and thereafter in-
crease monotonically in H j until the target node j= t is
reached. We allow the path to pass between nodes with the
same value of H j, and we consider paths that only increase
or only decrease as hierarchical. Given H j for each node j
� �1,N� in a network we quantify the network’s degree of
information hierarchy FH by the fraction of shortest paths
between nodes in the network which are also hierarchical
paths:

FH =
�number of hierarchical shortest paths�

N�N − 1�
, �15�

where the denominator counts the total number of shortest
paths between nodes in the network. In case of degenerate
shortest paths, each path contributes to FH by a weight given
by its contribution to the traffic betweenness. In accordance
with intuition we find that FH decays with system size for
random Erdős-Rényi networks, as shortest paths get longer.
The decay is plotted in the inset of Fig. 10. FH=1 for both
hierarchies and club hierarchies whereas FH for random
scale-free networks depends on degree distribution. Figure
10 shows how the information hierarchy varies with degree
distribution for pure random scale-free networks param-
etrized by P�k��1/k�. As � increases from 2 the network
goes from being a complete information hierarchy with FH
=1 toward 0 when � approaches 3, the average degree ap-
proaches 2, and shortest paths become long. For real-world
networks the overall observation is that biological networks
are antihierarchical with respect to FH, while social and
communication networks tend to be hierarchical �see table in
Fig. 10�. The Internet is a network of autonomous systems
�31� that in this data set consists of 6474 nodes and 12 572
links and its degree distribution is scale-free with P�k�
�1/k2.1. In the CEO network �6193 nodes and 43 074 links�,
chief executive officers are connected by links if they sit on
the same board �32�. The city network is constructed by
mapping 4127 streets, to nodes and 5565 intersections to
links between the nodes in the Swedish city of Stockholm
�5,33�. Fly is the protein interaction network in Drosophilia
melanogaster detected by the two-hybrid experiment �34�,
and yeast refers to the similar network in Saccharomyces
cerevisiae �35�.

Overall, for scale-free networks, the information hierar-
chy FH quantitatively follows the topological hierarchy F
presented in �29�. Thus networks with maximal �minimal�
topological hierarchy F �29� also have large �small� FH. But
it is important that the information hierarchy allows for a
natural generalization to non-scale-free networks, and is
therefore a unified definition of hierarchical organization
with the most visible node in the top. A less powerful rank-
ing is the betweenness �24� as the betweenness is sensitive to
links that shortcut important nodes. By adding links between

the children of a top node as in the club tree in Fig. 7, the
ranking changes completely as the betweenness for the top
node in principle would be zero, whereas its position at the
top would still be reflected by the hide ranking.

V. CONCLUSION

Networks are a natural way to visualize the limited infor-
mation access experienced by individual parts of the overall
system. In the present paper we have explored topologies of
a number of model networks in terms of their ability to fa-
cilitate peer-to-peer communication. The ability to transmit
specific signals is quantified in terms of the difficulty in navi-
gating the networks, quantified by the search information S.
As an overall lesson we have found that the inequality

S�real world� � S�random,fixed degree� � S�ER� ,

�16�

is valid for all investigated real-world networks �5,12–14�.
Here S �random, fixed degree� represents randomized net-

FIG. 10. �Color online� The hierarchical features of scale-free
and Erdős-Rényi networks with hide H representing the importance
of a node. The nodes in the networks in the top of the figure are
arranged in hierarchical order. The intuitively hierarchical order of
the tree is reproduced with the H ordering and all shortest paths are
hierarchical, FH=1. The network to the right has the opposite prop-
erty. A high ratio of the shortest paths are not hierarchical since a
typical path repeatedly goes up and down in the H hierarchy. The
table shows a number of real-world networks and their FH together
with the corresponding value in randomized networks with the
same degree sequence �15,16�. The biological networks are ran-
domized so that both bait and prey degree of all proteins are pre-
served. The plot in the bottom of the figure shows the behavior of
scale-free and Erdős-Rényi networks with respect to FH. Scale-free
networks are � dependent whereas Erdős-Rényi networks are size
dependent.
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works with exactly the same degree distribution as the inves-
tigated real-world network, whereas ER �Erdős-Rényi� net-
works only have the same total number of nodes and links as
the real-world network. The above inequality is in particular
associated with cases where the cost of passing a node is
proportional to log�k�, but it is also true for the higher local
information cost proportional to k, where k is the degree of
the node. As S represents an average of the contribution from
any node to any other node, the major contribution to S
comes from pairs of nodes that are separated by large dis-
tances. The fact that S in realistic networks is relatively large
teaches us that the topology of real-world networks disfavors
distant specific communication �13,14�. Topologically, large
S was found in a number of model networks, with modular
or hierarchical features with highly connected nodes deliber-
ately positioned “between” other nodes, hinting that a large
search information S is associated not only with broad degree
distributions, but also with well known organizational fea-
tures of social and biological systems.

The peer-to-peer search information S�s→ t� opens the
possibility for a detailed measure of the relative “impor-
tance” of nodes in a given network. In fact, measuring vis-
ibility of a node t in terms of how well hidden the node is

from the rest of the network as in Eq. �14�, we have shown
how networks can be ranked in terms of a generalized hier-
archy measure. The measure captures both the hierarchy in
the usual terms of trees shown in Fig. 9 and at the same time
also the intrinsic topological hierarchical nature of scale-free
networks. Thus, this generalized hierarchy measure defines
scale-free networks with degree distribution with exponent
close to �=2 to be hierarchical, whereas narrower distribu-
tions will be antihierarchical unless they are deliberately or-
ganized in a treelike structure.

Overall, the different ways of organizing networks can be
recast according to their ability or inability to transmit spe-
cific messages across the networks. The presented search in-
formation S provides a useful measure of this key functional
role that is reflected in the topology of many real-world net-
works.
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